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Abstract

Presented is a two-dimensional sublamination theory for analysis of plates made of functionally graded materials. The

sublamination plate theory extends a layer-wise higher-order shear-deformation theory for laminated plates by considering

material properties being continuous functions of the thickness coordinate and using a new concept of sublamination to

increase the degrees of freedom. The theory accommodates free shear stress conditions on the bonding surfaces, accounts

for non-uniform deformation-dependent distributions of transverse shear stresses through the thickness, can be used for

evaluating boundary restraint effects, and can be used for analyzing thin and thick plates with any boundary conditions.

A sublamination plate element based on this theory is developed and validated for static and dynamic analysis. The degrees

of freedom of the element is adaptable. For an element away from boundaries, it’s degrees of freedom can be reduced at the

elemental level without loss of accuracy. Analytical shear warping functions are presented. Moreover, modal analysis of

functionally graded plates with different boundary conditions is performed to show the capability and accuracy of the

theory.

r 2007 Published by Elsevier Ltd.
1. Introduction

Some structural components serve under conditions that require material properties vary within the
component. For example, a kitchen knife is required to be hard at its cutting edge and strong and tough
elsewhere. A gear needs to have a hard, wear-resistant surface but a tough body. A turbine blade needs to have
a strong, tough and creep-resistant body but a refractory and oxidation-resistant outer surface. A composite
made of ceramic on one side and metal on the other side is ideal for wear-resistant linings in the mineral
processing industry; the hard ceramic face is for the exposed side and the tough metal face is for the rear side
that is bolted or welded to a support frame. Other examples include the heat shield of rockets and human
implants (e.g., bone and dental implants), which demands a heat or corrosion resistant outer layer and a tough
metallic base material in order to increase the life time of the component. Composite materials manufactured
by traditional methods may fulfill such requirements, but a traditional composite is a man-made geometrical
ee front matter r 2007 Published by Elsevier Ltd.
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combination of different pre-existing phases and is a compromise between the properties of the component
materials. Unfortunately, abrupt transition in material composition and properties within a conventional
composite component often results in severe local stress concentration due to manufacturing (i.e., residual
stresses) or external mechanical/thermal loading. For a composite structure formed by mixing different
materials, temperature changes during fabrication and subsequent service can generate high internal stresses
and/or unwanted pre-curvatures as a result of unequal thermal expansion/contraction between the constituent
phases. Similarly, different local deformation fields are induced in the two materials during imposed
mechanical loading because of their different mechanical properties. This incompatibility in thermomecha-
nical deformation results in internal stresses and strains that play a key role in the creation of threading
dislocations, localized yielding around interfaces, interfacial debonding, microcracking and brittle failure of
the hard phase, or separation by void nucleation and growth in the ductile phase. Hence, composite materials
with smooth gradation of material properties had been occasionally suggested in the literature [1], and those
were the precursors of functionally graded materials (FGMs). However, as a formulated concept studied
under a large organized research program, the term FGM originated in Japan in 1984 during a spaceplane
project that required a thermal barrier material capable of withstanding a surface temperature of 2000K in an
oxidizing environment and a temperature gradient of 1000K across a thickness less than 10mm and being
tough and thermally conductive on the lower-temperature side [2].

A functionally graded material is a composite material whose composition and microstructure are locally
varied during manufacturing so that certain variations of local material (thermal and mechanical) properties
are achieved. An FGM is very often a two-component composite characterized by a compositional gradient
from one component to the other, and hence the properties of both components can be fully utilized. One
important group of low-cost FGMs is ceramic–metal FGMs. The smooth gradation of material composition
from ceramic to metal would enhance the toughness of the ceramic face and also provide a ceramic–metal
bonding better than that produced by sintering a ceramic and then coating it with metal. FGMs are ideal
candidates for applications involving severe thermal gradients, including thermal structures in advanced
aircraft and aerospace engines and computer circuit boards. Comparing to traditional composites merits of
FGMs include: (1) small thermal stresses and a designed peak thermal stress location; (2) small stress
concentrations at material interfaces in an FGM; (3) strong interfacial bonding; (4) reduced free-edge effects;
(5) delayed plastic yielding; and (6) increased fracture toughness by reducing driving force for crack growth
along/across material interfaces [3,4].

A functionally graded material can be manufactured by chemical or physical vapor deposition methods,
plasma spraying methods, powder metallurgy methods, self-propagating high-temperature combustion
synthesis methods, surface chemical reaction methods, sintering methods, and many other techniques [2,3].
A common approach toward the fabrication of an FGM is to vary material composition through the thickness
of a thin substrate. However, if the manufacturing facility is versatile enough, gradient material composition
along two dimensions is possible. The concept of FGMs allows full integration of material fabrication and
structural engineering into the final design of structural components. Because the static and dynamic behavior
of an FG structure is determined by the mechanical and thermal properties of the FGM and the actual
boundary conditions and mechanical/thermal loads, structural analysis and design of material fabrication
process need to be performed before actual manufacturing of the FGM, and it is a multi-disciplinary task and
a reverse engineering problem. Because of the variation of material composition, many problems exist,
including design of fabrication process in order to have an FGM with desired material properties,
manufacturing-induced residual stresses, difficulties in material property characterization, negative effects of
stress concentrations at free surfaces and edges, and difficulties in the modelling and analysis of structures
made of FGMs. Research areas related to FGMs include process metallurgy, composite synthesis, mechanics
and micromechanics of composites, fracture mechanics, and design methodologies. The science and
technology of FGMs has been dramatically advanced during the last decade. Comprehensive reviews of
current FGM research can be found in Refs. [2–5].

To extend conventional structural analysis techniques for functionally graded structures certain advances in
macrostructural property characterization and thermomechanical modelling are needed. Because of non-
uniform material distribution, design of functionally graded structures faces challenging modelling and
analysis problems that exist in traditional composite structures. Thermomechanical analysis and engineering
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of functionally graded structures require effective properties of each FGM made of multiple materials. Hence,
accurate estimation of effective properties of FGMs is the key to the eventual success in the design of FGMs.
However, because precise information about the size, shape, and distribution of material particles in an FGM
is not available and the effective moduli of the graded composite must be evaluated based only on the volume
fraction distributions and the approximate shape of the dispersed phase. When particles are small, the material
properties Pi of a mixture are difficult to be estimated using the volume fractions V i [2]. Micromechanics
models and analysis methods have been developed by researchers to infer the effective properties of an
equivalent macroscopically homogeneous composite material, including the Voigt method (i.e., P ¼ P1V 1þ

P2V2, an arithmetic average), the Reuss method (i.e., 1=P ¼ V1=P1 þ V 2=P2, a harmonic average), a gene-
ralized averaging method (P ¼ P1V 1 þ P2V 2 þ P12V 1V 2, where P12 depends on P1, P2, V 1, V 2, and
microstructure-dependent quantities), self-consistent methods [6,7], the Mori–Tanaka method [8], differential
schemes, bounding techniques, finite-element unit cell models, and numerical modelling of a bulk FGM with
boundary conditions [3,9].

Similar to traditional composite laminates, a functionally graded plate (FGP) may experience severe
deformation-dependent transverse shear deformations, free-edge effects, and boundary constraint effects due
to non-uniform material distribution and thick thickness. Detailed finite-element analysis using small three-
dimensional (3D) solid elements can be used to study such problems, but it is cumbersome and time-
consuming. However, some exact 3D elasticity solutions that account for deformation-dependent shears exist
in the literature [10–14], but they are all for plates with special boundary conditions, especially simply
supported boundary conditions. A 2D plate theory that can treat arbitrary boundary conditions and account
for deformation-dependent shear deformations and free-edge and boundary constraint effects does not exist.

This work contributes to the modelling and analysis of FGPs by deriving a 2D sublamination plate theory
(SPT) that can account for higher-order deformation-dependent transverse shear deformations and boundary
effects caused by free edges and warping restraints at boundaries. A method of computing shear warping
functions is derived and numerically demonstrated, and a sublamination plate element (SPE) is also
formulated and validated.

2. Sublamination plate theory

An FGP can be fabricated by a stepwise or a continuous grading method. Shear warping functions of an
FGP fabricated using a stepwise grading method can be derived by layerwise analysis, and shear warping
functions of an FGP fabricated using a continuous grading method can also be derived by layerwise analysis
with many assumed layers, as shown next.

2.1. Shear warping functions by layerwise analysis

Fig. 1 shows an FGP fabricated using a stepwise grading method and the xyz coordinate system for
modeling, where the xy represents the reference plane of the plate, the x and y are in-plane (or reference plane)
coordinates, and the z is the thickness coordinate. To include transverse shear deformations in the modeling of
a general FGP, each layer fabricated during one step of the stepwise grading method needs an assumed
displacement field because each layer has different material properties. To account for transverse shear
stresses, we generalize a layerwise third-order shear-deformation theory [15] by using a new concept of
x

z

y

a

b

h

Fig. 1. The plate geometry and the coordinate system.
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sublamination to improve the versatility and accuracy in predicting transverse shear stresses and boundary
effects. For the ith layer with zipzpziþ1, the displacement field is assumed to be

u
ðiÞ
1 ¼ u� wxzþ gðiÞ5 zþ aðiÞ0 þ aðiÞ1 z2 þ aðiÞ2 z3,

u
ðiÞ
2 ¼ v� wyzþ gðiÞ4 zþ bðiÞ0 þ bðiÞ1 z2 þ bðiÞ2 z3,

u
ðiÞ
3 ¼ w, ð1Þ

where i ¼ 1; . . . ; I and I is the total number of layers. Here, uðx; y; tÞ, vðx; y; tÞ, and wðx; y; tÞ are the
displacements of the point on the xy plane (i.e., z ¼ 0), t denotes the time, and gðiÞ4 and gðiÞ5 are shear rotation
angles at the xy plane for the displacement field of the ith layer, as shown in Fig. 2. Moreover, ð Þx � qð Þ=qx

and ð Þy � qð Þ=qy. aðiÞk ðx; y; tÞ account for the displacement along the x-direction due to shear warping,
bðiÞk ðx; y; tÞ account for the displacement along the y-direction due to shear warping, and they are to be
determined by the continuity conditions of in-plane displacements and interlaminar shear stresses and the free
shear stress conditions on the top and bottom surfaces of the plate as shown next. The transverse normal
strain �33 can be accounted for by assuming u

ðiÞ
3 ¼ wþ ZðiÞ1 zþ ZðiÞ2 z2. However, as shown in Ref. [15], �33 is

mainly caused by Poisson’s effect and the external normal loads on the top and/or bottom surfaces, �33 and the
transverse normal stress s33 can be accurately obtained by integrating the 3D equilibrium equations (see
Eq. (41b)) after the reference plane deformations u, v, w, gðiÞ4 , and gðiÞ5 are obtained from a 2D plate theory.
Pagano [11] also pointed out that even the classical plate theory can predict s33 well. Because inclusion of �33
and s33 increases the number of dependent variables and formulation and computation difficulties without
significant accuracy increase, it is neglected here.

It follows from Eq. (1) that the transverse shear strains of the ith layer are

�ðiÞ13 ¼
qu
ðiÞ
1

qz
þ

qu
ðiÞ
3

qx
¼ gðiÞ5 þ 2zaðiÞ1 þ 3z2aðiÞ2 ,

�ðiÞ23 ¼
qu
ðiÞ
2

qz
þ

qu
ðiÞ
3

qy
¼ gðiÞ4 þ 2zbðiÞ1 þ 3z2bðiÞ2 . (2)

The stress–strain relation for the ith layer is given by [16,17]

sðiÞ23
sðiÞ13

8<
:

9=
; ¼ ½QðiÞ2 �

�ðiÞ23

�ðiÞ13

8<
:

9=
;; ½QðiÞ2 � ¼

Q
ðiÞ
44 Q

ðiÞ
45

Q
ðiÞ
45 Q

ðiÞ
55

2
4

3
5,

Q
ðiÞ
44 ¼ cos2 yG

ðiÞ
23 þ sin2 yG

ðiÞ
13; Q

ðiÞ
55 ¼ sin2 yG

ðiÞ
23 þ cos2 yG

ðiÞ
13; Q

ðiÞ
45 ¼ sin y cos yðGðiÞ13 � G

ðiÞ
23Þ, (3)
h/2

h/2
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dyx

x

y y

z
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Fig. 2. Shear deformation of a differential plate element: (a) undeformed and deformed configurations, and (b) shear warping of cross

sections. The t1 and t2 are stress vectors.
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where y is the rotation angle of fibers (if composite laminates) from the material axis x̂ to the structural axis x,
and G

ðiÞ
kl are shear moduli. If the ith layer is an isotropic one, Q

ðiÞ
44 ¼ Q

ðiÞ
55 ¼ GðiÞ and Q

ðiÞ
45 ¼ 0.

If there is no delamination, the in-plane displacements u1 and u2 and interlaminar shear stresses s13 and s23
are continuous across the interface of any two adjacent layers. Moreover, it is assumed that there is no shear
loadings on the top and bottom surfaces of the plate, i.e., s23 ¼ s13 ¼ 0 at z ¼ z1 and z ¼ zIþ1. Consequently,
we have

sðIÞ23 ðx; y; zIþ1; tÞ ¼ 0,

sðIÞ13 ðx; y; zIþ1; tÞ ¼ 0,

sðiÞ23ðx; y; ziþ1; tÞ � sðiþ1Þ23 ðx; y; ziþ1; tÞ ¼ 0 for i ¼ 1; . . . ; I � 1,

sðiÞ13ðx; y; ziþ1; tÞ � sðiþ1Þ13 ðx; y; ziþ1; tÞ ¼ 0 for i ¼ 1; . . . ; I � 1,

u
ðiÞ
2 ðx; y; ziþ1; tÞ � u

ðiþ1Þ
2 ðx; y; ziþ1; tÞ ¼ 0 for i ¼ 1; . . . ; I � 1,

u
ðiÞ
1 ðx; y; ziþ1; tÞ � u

ðiþ1Þ
1 ðx; y; ziþ1; tÞ ¼ 0 for i ¼ 1; . . . ; I � 1,

sð1Þ23 ðx; y; z1; tÞ ¼ 0,

sð1Þ13 ðx; y; z1; tÞ ¼ 0; aðîÞ0 ¼ bðîÞ0 ¼ 0,

aðiÞ1 ¼ bðiÞ1 ¼ 0 for i ¼ 1; . . . ; I ; iaî. (4)

The îth layer is the layer that contains the reference plane xy, and aðîÞ0 ¼ bðîÞ0 ¼ 0 for the îth layer because u

and v represent the displacements of the point on the reference plane (see Eq. (1)). These 6I algebraic
equations can be used to determine the 6I unknowns aðiÞk and bðiÞk (k ¼ 0; 1; 2 and i ¼ 1; . . . ; I) in terms of gðiÞ4
and gðiÞ5 . Substituting Eqs. (1)–(3) into Eq. (4) yields

½A�fag ¼ ½B�fgg; fag ¼ ½A�fgg, (5)

where ½A� is a 6I � 6I constant matrix, ½B� is a 6I � 2I constant matrix, ½A� ð¼ ½A��1½B�Þ is a 6I � 2I constant
matrix, and

fag � fað1Þ0 ; a
ð1Þ
1 ; a

ð1Þ
2 ; b

ð1Þ
0 ; b

ð1Þ
1 ; b

ð1Þ
2 ; . . . ; a

ðIÞ
0 ; a

ðIÞ
1 ; a

ðIÞ
2 ; b

ðIÞ
0 ;b

ðIÞ
1 ;b

ðIÞ
2 g

T,

fgg � fgð1Þ4 ; g
ð1Þ
5 ; . . . ; g

ðIÞ
4 ; g

ðIÞ
5 g

T.

To reduce the total number of dependent variables, an FGP of I layers can be grouped into J ðpIÞ

sublaminates. If the whole plate is treated as one sublaminate, g4 ¼ gðiÞ4 and g5 ¼ gðiÞ5 for i ¼ 1; . . . ; I . If the first
10 layers is grouped as the first sublaminate, the second 10 layers as the second sublaminate, and the rest as the
third sublaminate, we have g½2�4 ¼ gðiÞ4 and g½2�5 ¼ gðiÞ5 for i ¼ 11; . . . ; 20, as shown in Fig. 3. Hence, ½B� can be
reduced to a 6I � 2J constant matrix, ½A�ð¼ ½A��1½B�Þ is a 6I � 2J constant matrix, and

fag � fað1Þ0 ; a
ð1Þ
1 ; a

ð1Þ
2 ; b

ð1Þ
0 ; b

ð1Þ
1 ; b

ð1Þ
2 ; . . . ; a

ðIÞ
0 ; a

ðIÞ
1 ; a

ðIÞ
2 ; b

ðIÞ
0 ;b

ðIÞ
1 ;b

ðIÞ
2 g

T,

fgg � fg½1�4 ; g
½1�
5 ; . . . ; g

½J�
4 ; g

½J�
5 g

T. ð6Þ

With the sublamination shown in Fig. 3 and Eq. (6), one can obtain from the second equation of Eq. (5) that

aðiÞ0 ¼
XJ

j¼1

ða
ði;jÞ
04 g½j�4 þ a

ði;jÞ
05 g½j�5 Þ; aðiÞ1 ¼

XJ

j¼1

ða
ði;jÞ
14 g½j�4 þ a

ði;jÞ
15 g½j�5 Þ; aðiÞ2 ¼

XJ

j¼1

ða
ði;jÞ
24 g½j�4 þ a

ði;jÞ
25 g½j�5 Þ,

bðiÞ0 ¼
XJ

j¼1

ðb
ði;jÞ
04 g½j�4 þ b

ði;jÞ
05 g½j�5 Þ; bðiÞ1 ¼

XJ

j¼1

ðb
ði;jÞ
14 g½j�4 þ b

ði;jÞ
15 g½j�5 Þ; bðiÞ2 ¼

XJ

j¼1

ðb
ði;jÞ
24 g½j�4 þ b

ði;jÞ
25 g½j�5 Þ, (7)
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where i ¼ 1; . . . ; I . Moreover, a
ði;jÞ
kl and b

ði;jÞ
kl are entries of ½A� and are constants determined by material

properties and thickness coordinates of layers. Hence it follows from Eq. (1) that the displacement field of the
ith layer can be presented in the following form:

u
ðiÞ
1 ¼ u� wxzþ gðiÞ5 zþ

XJ

j¼1

ðg½j�4 g
ði;jÞ
14 þ g½j�5 g

ði;jÞ
15 Þ,

u
ðiÞ
2 ¼ v� wyzþ gðiÞ4 zþ

XJ

j¼1

ðg½j�4 g
ði;jÞ
24 þ g½j�5 g

ði;jÞ
25 Þ,

u
ðiÞ
3 ¼ w, ð8Þ

where

g
ði;jÞ
14 ¼ a

ði;jÞ
04 þ a

ði;jÞ
14 z2 þ a

ði;jÞ
24 z3; g

ði;jÞ
15 ¼ a

ði;jÞ
05 þ a

ði;jÞ
15 z2 þ a

ði;jÞ
25 z3,

g
ði;jÞ
24 ¼ b

ði;jÞ
04 þ b

ði;jÞ
14 z2 þ b

ði;jÞ
24 z3; g

ði;jÞ
25 ¼ b

ði;jÞ
05 þ b

ði;jÞ
15 z2 þ b

ði;jÞ
25 z3, (9)

g
ði;jÞ
15 and g

ði;jÞ
24 are shear warping functions, and g

ði;jÞ
14 and g

ði;jÞ
25 represent shear coupling functions. It follows from

Eqs. (8) and (2) that the strains are given by

�ðiÞ13 ¼ gðiÞ5 þ
XJ

j¼1

ðg½j�4 g
ði;jÞ
14z þ g½j�5 g

ði;jÞ
15z Þ,

�ðiÞ23 ¼ gðiÞ4 þ
XJ

j¼1

ðg½j�4 g
ði;jÞ
24z þ g½j�5 g

ði;jÞ
25z Þ,

�ðiÞ12 ¼ uy þ vx � 2zwxy þ zgðiÞ5y þ zgðiÞ4x

þ
XJ

j¼1

ðg½j�4xg
ði;jÞ
24 þ g½j�5xg

ði;jÞ
25 þ g½j�4yg

ði;jÞ
14 þ g½j�5yg

ði;jÞ
15 Þ,

�ðiÞ11 ¼ ux � zwxx þ zgðiÞ5x þ
XJ

j¼1

ðg½j�4xg
ði;jÞ
14 þ g½j�5xg

ði;jÞ
15 Þ,

�ðiÞ22 ¼ vy � zwyy þ zgðiÞ4y þ
XJ

j¼1

ðg½j�4yg
ði;jÞ
24 þ g½j�5yg

ði;jÞ
25 Þ,

�ðiÞ33 ¼ 0. ð10Þ

The analysis will be based on a linear, uncoupled thermoelasticity theory, where the heat generated by
elastic straining is assumed to be a negligible second-order effect and the influences of structural deformation
on the thermal domain and thermal properties are also neglected. Hence, for an FGP subjected to
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thermomechanical loads, strains due to thermal expansion can be linearly added to the mechanical strains, and
the mechanical stress–strain relation of the ith layer can be written as [16–18]

fsðiÞg ¼ ½QðiÞ�ðf�ðiÞg � fLðiÞgtÞ

¼ ½QðiÞ� ½S2�fc2g þ
XJ

j¼1

½S
ði;jÞ
3 �fc

½j�
3 g � fL

ðiÞgt

 !
¼ ½QðiÞ�ð½SðiÞ�fcg � fLðiÞgtÞ, ð11Þ

where

fsðiÞg � fsðiÞ11;s
ðiÞ
22; s

ðiÞ
23;s

ðiÞ
13; s

ðiÞ
12g

T,

f�ðiÞg � f�ðiÞ11; �
ðiÞ
22; �

ðiÞ
23; �

ðiÞ
13; �

ðiÞ
12g

T,

fLðiÞg � fLðiÞ1 ; L
ðiÞ
2 ; 0; 0; L

ðiÞ
12g

T,

LðiÞ1 ¼ â1cos2 yþ â2 sin
2 y; LðiÞ2 ¼ â1 sin

2 yþ â2 cos2 y; LðiÞ12 ¼ 2ðâ1 � â2Þ cos y sin y,

fc2g � fux; vy; uy þ vx;wxx;wyy;wxyg
T,

fc½j�3 g � fg
½j�
4x; g

½j�
4y; g

½j�
5x; g

½j�
5y; g

½j�
4 ; g
½j�
5 g

T,

fcg � ffc2g
T; fc½1�3 g

T; . . . ; fc½J�3 g
TgT,

½S2� �

1 0 0 �z 0 0

0 1 0 0 �z 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 �2z

2
6666664

3
7777775
,

½S
ði;jÞ
3 � �

g14 0 zdij þ g15 0 0 0

0 zdij þ g24 0 g25 0 0

0 0 0 0 dij þ g24z g25z

0 0 0 0 g14z dij þ g15z

zdij þ g24 g14 g25 zdij þ g15 0 0

2
6666664

3
7777775

ði;jÞ

. (12)

Here t is the temperature increase beyond the reference temperature of the stress-free reference
configuration, â1 and â2 are thermal expansion coefficients with respect to the material axes x̂ and ŷ,
respectively, y is the rotation angle from the x̂-axis to the x-axis, and ½QðiÞ� is the transformed and reduced
(because s33 ¼ 0) material stiffness matrix. Moreover, dij ¼ 1 if the ith layer is within the jth sublaminate
(i.e., gðiÞ4 ¼ g½j�4 ), and dij ¼ 0 if the ith layer is not within the jth sublaminate. Note that the dij used here
is not the regular Dirac delta function. For example, if the second layer is within the first sublaminate, d21 ¼ 1
and d22 ¼ 0. We note that, even if an FGP is fabricated by a continuous grading method, this method
also works because the plate can be artificially divided into I layers with material properties being those
at the mid-point of each layer. The transverse shears due to non-uniform thermal expansion through the
plate thickness are assumed to be negligible, and the temperature distribution can be assumed in the following
form:

tðx; y; z; tÞ ¼ t1ðx; y; tÞt2ðzÞ. (13)
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2.2. Effective mechanical and thermal properties

Mechanical properties of an FGP include Young’s modulus E, shear modulus G, Poisson’s ratio n, and mass
density r, and thermal properties include the coefficient of thermal expansion â, the thermal conductivity k,
and the specific heat capacity c. r and n are usually linear functions of material volume ratios, but others are
nonlinear functions of material volume ratios because they depend on material microstructures [9]. The FGP
theory presented here can work with effective material properties estimated by using any method. For the
purpose of demonstration, the effective properties P (e.g., E and a) will be estimated using the simple, Voigt
method (i.e., an arithmetic method) as

P ¼ P1V1 þ P2V 2; V 1 þ V2 ¼ 1, (14)

where P1 and P2 are the properties of the first and second constituent materials (e.g., metal and ceramic), and
V 1 and V 2 are the volume fractions of the constituent materials. The distributions of volume fractions through
the plate thickness are assumed to follow the following simple power law:

V2 ¼
z� z1

zIþ1 � z1

� �n

, (15)

where n can be any non-negative real number, and z1pz1. Note that V2 ¼ 0 at z ¼ z1 if z1 ¼ z1, and V240 at
z ¼ z1 if z1oz1. Hence, we have

P ¼ P1 þ ðP2 � P1Þ
z� z1

zIþ1 � z1

� �n

. (16)

Most of mechanical and thermal properties are linear or nonlinear functions of temperature, but r and
n are usually independent of temperature. If a property P is a linear function of temperature, one can assume
that

P ¼ P0ð1þ P̂tÞ, (17)

where t is the temperature beyond the reference temperature and P and P̂ are constant. For detailed modeling
of effective material properties of FGMs the reader is referred to Refs. [3,9].

3. Finite-element formulation

The extended Hamilton principle states [19]Z t

0

ðdKe � dPþ dWncÞdt ¼ 0, (18)

where Ke is the kinetic energy, P the elastic energy, and Wnc the non-conservative energy due to external
distributed and/or concentrated loads and dampings.

3.1. Elastic energy

It follows from Eqs. (11)–(13) that

dP ¼
XI

i¼1

Z
A

Z ziþ1

zi

fd�ðiÞgTfsðiÞgdzdA ¼

Z
A

fdcgTð½F�fcg � fF̂gt1ÞdA, (19)

where A denotes the area of the reference plane, and zi and ziþ1 indicate the locations of the lower and upper
surfaces of the ith layer. Moreover, ½F� is a ð6þ 6JÞ � ð6þ 6JÞ symmetric matrix and fF̂g is a ð6þ 6JÞ � 1
vector, which are defined as

½F� ¼
XI

i¼1

Z ziþ1

zi

½SðiÞ�T½QðiÞ�½SðiÞ�dz; fF̂g ¼
XI

i¼1

Z ziþ1

zi

½SðiÞ�T½QðiÞ�fLðiÞgt2ðzÞdz. (20)
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Because the heat generated by elastic straining is negligible, the influences of elastic deformations on plate’s
geometry and thermal properties are neglected, and the variation frequency of temperature is assumed to be
much lower than the mechanical vibration frequency, the temperature t can be solved separately using the heat
transfer equation. Consequently, t can be treated as a known dependent variable for the mechanical problem
here and hence dt ¼ 0 is used. The integration of Eq. (20) can be obtained using Gauss quadratures [20].

Using the finite-element discretization scheme, we discretize the displacements as

fu; v;w; g½1�4 ; g
½1�
5 ; . . . ; g

½J�
4 ; g

½J�
5 g

T ¼ ½N�fq½n�g, (21)

where fq½n�g is the displacement vector of the nth element and ½N� is a matrix of 2D shape functions. Here four-
node quadrilateral elements are assumed to be used. Each node has 6þ 2J degrees of freedom (dof)
(i.e., u; v;w, wy;�wx;wxy, g

½1�
4 ; g

½1�
5 ; . . . ; g

½J�
4 ; g

½J�
5 ). Hence ½N� is a ð3þ 2JÞ � ð24þ 8JÞ matrix. Moreover,

fcg ¼ ½D�fq½n�g; ½D� � ½q�½N�, (22)

where ½q� is a ð6þ 6JÞ � ð3þ 2JÞ matrix consisting of differential operators, and ½D� is a ð6þ 6JÞ � ð24þ 8JÞ

matrix.
Substituting Eq. (22) into Eq. (19) yields

dP ¼
XNe

n¼1

Z
A½n�
fdq½n�gT½D�Tð½F�½D�fq½n�g � fF̂gt1ÞdA ¼

XNe

n¼1

fdq½n�gTð½K ½n��fq½n�g � fF̂
½n�
gÞ

¼ fdqgTð½K �fqg � fF̂gÞ, ð23Þ

where

½K ½n�� �

Z
A½n�
½D�T½F�½D�dA; fF̂

½n�
g �

Z
A½n�
½D�TfF̂gt1 dA, (24)

Ne is the total number of elements, A½n� is the area of the nth element, ½K ½n�� is the stiffness matrix of the nth
element, ½K � is the structural stiffness matrix, fF̂

½n�
g is the thermal-induced mechanical loading, and fqg is the

structural displacement vector.

3.2. Kinetic energy

The displacement field shown in Eq. (8) can be rewritten as

fuðiÞg ¼ ½S2�fc2g þ
XJ

j¼1

½S
ði;jÞ
3 �fc

ðjÞ

3 g ¼ ½S
ðiÞ
�fcg, (25)

where

fuðiÞg � fu
ðiÞ
1 ; u

ðiÞ
2 ; u

ðiÞ
3 g

T,

fc2g � fu; v;w;wx;wyg
T; fc

½j�

3 g � fg
½j�
4 ; g
½j�
5 g

T; fcg � ffc2g
T; fc

½1�

3 g
T; . . . ; fc

½J�

3 g
TgT,

½S2� �

1 0 0 �z 0

0 1 0 0 �z

0 0 1 0 0

2
64

3
75; ½Sði;jÞ3 � �

g14 zdij þ g15

zdij þ g24 g25

0 0

2
64

3
75
ði;jÞ

. (26)

Hence, the variation of kinetic energy is given by

dKe ¼ �
XI

i¼1

Z
A

Z ziþ1

zi

fduðiÞgTrðiÞf €uðiÞgdzdA

¼ �

Z
A

fdcgT½F�f €cgdA, ð27Þ
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where rðiÞ is the mass density of the ith layer, and ½F� is a ð5þ 2JÞ � ð5þ 2JÞ symmetric matrix given by

½F� ¼
XI

i¼1

Z ziþ1

zi

½S
ðiÞ
�TrðiÞ½S

ðiÞ
�dz. (28)

Using the same discretization scheme used in Eqs. (21) and (22), we obtain that

fcg ¼ ½D�fq½n�g; ½D� � ½q�½N�, (29)

where ½q� is a ð5þ 2JÞ � ð3þ 2JÞ matrix consisting of differential operators, and ½D� is a ð5þ 2JÞ � ð24þ 8JÞ

matrix.
Substituting Eq. (29) into Eq. (27) yields

dKe ¼ �
XNe

n¼1

Z
A½n�
fdq½n�gT½D�T½F�½D�f €q½n�gdA ¼ �

XNe

n¼1

fdq½n�gT½M ½n��f €q½n�g

¼ � fdqgT½M�f €qg, ð30Þ

where

½M ½n�� �

Z
A½n�
½D�T½F�½D�dA, (31)

½M ½n�� is the mass matrix of the nth element and ½M� is the structural mass matrix.

3.3. External loads

For the non-conservative virtual work we only consider the external transverse distributed load f 3 and
obtain that

dWnc ¼

Z
A

f 3dwdA ¼
XNe

n¼1

Z
A½n�
fdq½n�gTfN3gf 3 dA ¼

XNe

n¼1

fdq½n�gTfF ½n�g ¼ fdqgTfFg, (32)

where fN3g is the transpose of the third row of the ½N� shown in Eq. (21) and

fF ½n�g �

Z
A½n�
fN3gf 3 dA. (33)

3.4. Equation of motion

Substituting Eqs. (23), (30), and (32) into Eq. (18) yields the equation of motion as

½M�f €qg þ ½C�f _qg þ ½K �fqg ¼ fFg þ fF̂g, (34)

where a damping matrix ½C� is added. Note that this SPE is a 2D one but it accounts for 3D effects caused by
transverse shear stresses. This linear plate element is a new addition to the finite-element code geometrically
exact structural analysis (GESA), which is written using MATLAB syntax and is mainly for analysis of highly
flexible structures.

4. Numerical results

4.1. Shear warping functions

To show shear warping functions we consider an orthotropic laminate studied by Pagano [10,11]. The
properties of each graphite/epoxy layer are

E11 ¼ 172:38GPa; E22 ¼ 6:90GPa; E33 ¼ 6:90GPa; n12 ¼ 0:25; n13 ¼ 0:25; n23 ¼ 0:25,
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G12 ¼ 3:45GPa; G13 ¼ 3:45GPa; G23 ¼ 1:38GPa; ĥ ¼ 0:127mm, (35)

where ĥ is the layer thickness. If three sublaminates are assumed (i.e., J ¼ 3), it follows from Eq. (8) that shear
warpings W

ðiÞ
1 and W

ðiÞ
2 are given by

W
ðiÞ
1 � u

ðiÞ
1 � uþ wxz ¼

XJ

j¼1

ðg½j�4 g
ði;jÞ
14 þ g½j�5 ðdijzþ g

ði;jÞ
15 ÞÞ

¼ gðiÞ5 zþ g½1�4 g
ði;1Þ
14 þ g½1�5 g

ði;1Þ
15 þ g½2�4 g

ði;2Þ
14 þ g½2�5 g

ði;2Þ
15 þ g½3�4 g

ði;3Þ
14 þ g½3�5 g

ði;3Þ
15 ,

W
ðiÞ
2 � u

ðiÞ
2 � vþ wyz ¼

XJ

j¼1

ðg½j�4 ðdijzþ g
ði;jÞ
24 Þ þ g½j�5 g

ði;jÞ
25 Þ

¼ gðiÞ4 zþ g½1�4 g
ði;1Þ
24 þ g½1�5 g

ði;1Þ
25 þ g½2�4 g

ði;2Þ
24 þ g½2�5 g

ði;2Þ
25 þ g½3�4 g

ði;3Þ
24 þ g½3�5 g

ði;3Þ
25 , ð36Þ

where W
ðiÞ
1 is the shear warping of the yz cross section and W

ðiÞ
2 is the shear warping of the xz cross section.

Note that the dij is not the regular Dirac delta function. dij ¼ 1 if the ith layer is within the jth sublaminate
even if iaj, and dij ¼ 0 if the ith layer is not within the jth sublaminate even if i ¼ j. Also, it follows from
Eqs. (3) and (10) that

sðiÞ23
sðiÞ13

8<
:

9=
; ¼

Q
ðiÞ
44 Q

ðiÞ
45

Q
ðiÞ
45 Q

ðiÞ
55

2
4

3
5

PJ
j¼1 ðg

½j�
4 ðdij þ g

ði;jÞ
24z Þ þ g½j�5 g

ði;jÞ
25z ÞPJ

j¼1 ðg
½j�
4 g
ði;jÞ
14z þ g½j�5 ðdij þ g

ði;jÞ
15z ÞÞ

8<
:

9=
;. (37)

For a ½0�=90�=0�� laminate, numerical results confirm that Q
ðiÞ
45 ¼ 0 and shear coupling functions g

ði;jÞ
14

and g
ði;jÞ
25 are always zero for orthotropic cross-ply laminates [21]. Fig. 4 shows the shear warping functions

g
ðijÞ
kl and their contributions to the transverse shear stresses (see Eq. (37)). For this case, the ith layer is defined

to be the ith sublaminate. The bottom and top layers are the first and third layers, respectively. Note that
each of the shear warping functions of every sublaminate is continuous and its contribution to sk3 is also

continuous although dij þ g
ði;jÞ
24z and dij þ g

ði;jÞ
15z are discontinuous. Because three sublaminates are used, g½i�4 and

g½i�5 (i ¼ 1; 2; 3) are six independent variables, and their relations depend on boundary and loading conditions.

If ðg½1�4 ; g
½2�
4 ; g

½3�
4 Þ ¼ ð1; 1; 1Þg4 and ðg

½1�
5 ; g

½2�
5 ; g

½3�
5 Þ ¼ ð1; 1; 1Þg5 are assumed, Fig. 5 shows the shear warpings W i and

transverse shear stresses si3, where

sðiÞ13=g5 ¼ Q
ðiÞ
55W

ðiÞ
1z=g5; sðiÞ23=g4 ¼ Q

ðiÞ
44W

ðiÞ
2z=g4. (38)

The broken lines represent the exact distributions [10,11], which are functions of specified plate dimensions
and boundary and loading conditions. We note that the predicted shear stresses do not match well with the
exact ones because incomplete cubic polynomials are used to describe the cross-section warping, as shown in
Eq. (1). Moreover, because the warping functions and shear stress distributions obtained by Pagano [10]
are dependent on the boundary and loading conditions and the thickness-to-span ratio (see Figs. 4c and e of
Ref. [10]), this discrepancy is also problem dependent.

If the answers obtained from a set of specified plate dimensions and boundary and loading conditions are
g½j�4 ¼ ð2; 1; 2Þg4 and g½j�5 ¼ ð0:5; 1; 0:5Þg5, Fig. 6 shows the W i and si3. Note that they are close to those of
Pagano [10,11].

If g½j�4 ¼ ð�0:58; 1;�0:58Þg4 and g½j�5 ¼ ð�0:375; 1;�0:375Þg5, Fig. 7 shows the W i and si3. At a clamped edge
parallel to the y-axis, because s13 ¼ 0 at the bottom (z ¼ z1) and top (z ¼ zIþ1) surfaces and the reference
plane should be parallel to the bottom and top surfaces, wx ¼ 0. Moreover, because u

ð1Þ
1 ðz1Þ ¼ u

ðIÞ
1 ðzIþ1Þ ¼ 0 at

the clamped edge,

W
ð1Þ
1 ðz1Þ ¼ 0 ¼ g½1�5 ðz1 þ g

ð1;1Þ
15 ðz1ÞÞ þ g½2�5 g

ð1;2Þ
15 ðz1Þ þ g½3�5 g

ð1;3Þ
15 ðz1Þ,

W
ðIÞ
1 ðzIþ1Þ ¼ 0 ¼ g½1�5 g

ðI ;1Þ
15 ðzIþ1Þ þ g½2�5 g

ðI ;2Þ
15 ðzIþ1Þ þ g½3�5 ðzIþ1 þ g

ðI ;3Þ
15 ðzIþ1ÞÞ.

Hence, Fig. 7a can be used to simulate the restraint warping of a clamped plate edge parallel to the y-axis. This
condition can be implemented in analysis by using two multiple point constraints. Similarly, wy ¼W 2 ¼ 0 on
the bottom and top surfaces at a clamped edge parallel to the x-axis, and Fig. 7b can be used to simulate the
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Fig. 4. Shear warping functions of a ½0�=90�=0�� laminate: (a) dijzþ g
ði;jÞ
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24 , (c) Q

ðiÞ
55ðdij þ g
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solid lines are of the first sublaminate ðj ¼ 1Þ, the dashed lines ðj ¼ 2Þ, and the dash-dot lines ðj ¼ 3Þ.
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restraint warping of a clamped plate edge parallel to the x-axis. If the first-order shear-deformation theory is
used, one needs to assign wy ¼ g4a0 in order to have a non-zero shear force at a clamped plate edge parallel to
the x-axis, which violates the actual boundary condition. It is apparent that the use of sublamination increases
the freedom for accurate modeling of different boundary conditions.

It has been shown in the literature that shear warping functions may vary with the spatial location, vibration
frequency, loading and boundary conditions, and structural dimensions [13,22]. The shear warping functions
shown in Figs. 5–7a,b are very different, but each of them is continuous and has continuous sk3. The actual
cross-sectional warpings depend on the ratios between g½j�5 and g½j�4 , and g½j�5 and g½j�4 are determined by loading
and boundary conditions. Apparently, the use of sublamination and more dependent variables enables the
modeling of such deformation-dependent shear warping functions. If each layer is treated as a sublaminate,
the number of dependent variables will be 3þ 2I (i.e., u, v, w, gð1Þ4 , gð1Þ5 ,y, gðIÞ4 , gðIÞ5 ) and the theory is equivalent
to that in Ref. [23]. One can reduce the number of dependent variables by reducing the number of
sublaminates by using specific ratios between g½j�4 and g½j�5 , as shown in Figs. 5 and 6.

Next, we consider an orthotropic laminate studied by Noor and Burton [24]. The material properties of each
layer are

E11 ¼ 103:43GPa; E22 ¼ 6:90GPa; E33 ¼ 6:90GPa; n12 ¼ 0:3; n13 ¼ 0:3; n23 ¼ 0:49,

G12 ¼ 3:45GPa; G13 ¼ 3:45GPa; G23 ¼ 2:42GPa; ĥ ¼ 0:127mm. (39)
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Fig. 5. A ½0�=90�=0�� laminate: (a) shear warping W 1=g5, (b) shear warping W 2=g4, (c) shear stress s13=g5, and (d) shear stress s23=g4,
where g½j�4 ¼ ð1; 1; 1Þg4 and g½j�5 ¼ ð1; 1; 1Þg5 are assumed and the broken lines are exact solutions.
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For a ½0�=90�=0�=90�� laminate, Fig. 8 shows that the obtained distribution of s13=g5 (solid lines)
is similar to the exact one (broken lines) obtained by Noor and Burton [24, Fig. 3], where the reference
plane is chosen to be on the neutral axis of the yz cross section. Because the neutral axis of the xz

cross section is different from that of the yz cross section, the obtained s23=g4 is not as accurate as
s13=g5. For an anisotropic laminate, the neutral axis of the xz cross section may not be on the
midplane, the neutral axis of the yz cross section may not be on the midplane, and these two neutral axes
may not be on the same plane. These cause difficulties in and reveal complexity of the analysis of
anisotropic laminates. However, for symmetric and skew-symmetric laminates, the neutral axes
are always on the midplane. Because g½j�5 (j ¼ 1; . . . ; 4) are four independent variables, using different
ratios between g½j�5 may result in more accurate s13=g5, as shown in Fig. 8b. To improve the accuracy
one can even divide the four layers into eight (or more) sublaminates, as shown in Fig. 8c. Similarly,
this approach can be used to improve the accuracy of s13 and s23 in Figs. 6c and d by using more
sublaminates.

For a 21-layer ½ð0�=90�Þ10=0
�� laminate, the shear warping functions and transverse shear stresses

are shown in Fig. 9. We note that, although the shear warping functions and shear stresses are zigzag,
their global distributions are very similar to those of an isotropic plate (i.e., a parabolic function 1� 4z2=h2).
This is expected because the number of layers is high. It reveals that, for a laminate consisting of many
layers, one can treat it just like an isotropic one, except that the reference plane is better to be on the neutral
plane.

For general anisotropic laminates, shear coupling functions g14 and g25 are non-zero [21] and hence the
distributions of s13 and s23 depend on the values of g4 and g5, which are determined by loading and boundary
conditions and plate dimensions. However, FGPs are usually isotropic on the xy plane.
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Fig. 6. A ½0�=90�=0�� laminate: (a) W 1=g5, (b) W 2=g4, (c) s13=g5, and (d) s23=g4, where g½j�4 ¼ ð2; 1; 2Þg4 and g½j�5 ¼ ð0:5; 1; 0:5Þg5 and the

broken lines are exact solutions.
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4.2. Theory validation

To validate this 2D SPT in predicting all plate vibration modes we consider the free undamped vibration of
a simply supported plate that was studied in Refs. [12,14].

For any mechanical system without body forces, the dynamic version of the principle of virtual work can be
derived using the extended Hamilton principle to be [19]Z

V

XI

i¼1

X3
k¼1

ðsðiÞ1kx þ sðiÞ2ky þ sðiÞ3kz � rðiÞ €uðiÞk Þdu
ðiÞ
k dV ¼ 0, (40)

where V is the system volume and s1kx � qs1k=qx, etc. Hence, the equilibrium equations of a differential
material particle are

sðiÞ1kx þ sðiÞ2ky þ sðiÞ3kz ¼ rðiÞ €uðiÞk ; k ¼ 1; 2; 3. (41)

For a simply supported plate under free vibration the boundary conditions are given by [10]

u
ðiÞ
2 ¼ u

ðiÞ
3 ¼ sðiÞ11 ¼ 0 at x ¼ 0; a; i ¼ 1; . . . ; I ,

u
ðiÞ
1 ¼ u

ðiÞ
3 ¼ sðiÞ22 ¼ 0 at y ¼ 0; b; i ¼ 1; . . . ; I ,

sðiÞ13 ¼ sðiÞ23 ð¼ sðiÞ33Þ ¼ 0 at z ¼ �h=2; i ¼ 1; I . (42)
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Fig. 7. A ½0�=90�=0�� laminate: (a) W 1=g5, (b) W 2=g4, (c) s13=g5, and (d) s23=g4, where g½j�4 ¼ ð�0:58; 1;�0:58Þg4 and g½j�5 ¼ ð�0:375; 1;
�0:375Þg5.
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An FGP is usually transversely isotropic. For an orthotropic laminate or a transversely isotropic plate its
material stiffness matrix can be reduced by using s33 ¼ 0 (see Eq. (11)) to be

½QðiÞ� ¼

Q
ðiÞ
11 Q

ðiÞ
12 0 0 0

Q
ðiÞ
21 Q

ðiÞ
22 0 0 0

0 0 Q
ðiÞ
44 0 0

0 0 0 Q
ðiÞ
55 0

0 0 0 0 Q
ðiÞ
66

2
666666664

3
777777775
. (43)
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�� laminate: (a) W 1=g5, (b) s13=g5, and (c) s23=g4, where g½j�4 ¼ g4 and g½j�5 ¼ g5 are assumed.
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The solutions of dependent variables that satisfy Eqs. (41) and (42) have the following forms:

u ¼ U cosmx sin ny sinot; v ¼ V sinmx cos ny sinot; w ¼W sinmx sin ny sinot,

gðiÞ5 ¼ G
ðiÞ
5 cosmx sin ny sinot; gðiÞ4 ¼ G

ðiÞ
4 sinmx cos ny sinot; m � mp=a; n � np=b (44)

which can be proved by substituting Eq. (44) into Eqs. (8) and (10), then into Eq. (11) with t ¼ 0 and ½QðiÞ�

shown in Eq. (43), and then into Eq. (41), as shown next. Here the U, V, W, G
ðiÞ
4 , and G

ðiÞ
5 are unknown

constants, and o is the unknown, undamped natural frequency. Because g
ði;jÞ
14 ¼ g

ði;jÞ
25 ¼ 0 for transversely

isotropic plates, substituting Eq. (44) into Eq. (8) yields

u
ðiÞ
1 ¼ U1 cosmx sin ny sinot; u

ðiÞ
2 ¼ V1 sinmx cos ny sinot; u

ðiÞ
3 ¼W sinmx sin ny sinot,

U1ðzÞ � U �Wmzþ G
ðiÞ
5 zþ

XJ

j¼1

G
½j�
5 g
ði;jÞ
15 ; V1ðzÞ � V �Wnzþ G

ðiÞ
4 zþ

XJ

j¼1

G
½j�
4 g
ði;jÞ
24 . (45)

Substituting Eq. (44) into Eq. (10) yields

�ðiÞ13 ¼ E
ðiÞ
13 cosmx sin ny sinot; �ðiÞ23 ¼ E

ðiÞ
23 sinmx cos ny sinot,

�ðiÞ12 ¼ E
ðiÞ
12 cosmx cos ny sinot; �ðiÞ11 ¼ E

ðiÞ
11 sinmx sin ny sinot,

�ðiÞ22 ¼ E
ðiÞ
22 sinmx sin ny sinot; �ðiÞ33 ¼ E

ðiÞ
33 sinmx sin ny sinot,

E
ðiÞ
13 � G

ðiÞ
5 þ

XJ

j¼1

G
½j�
5 g
ði;jÞ
15z ; E

ðiÞ
23 � G

ðiÞ
4 þ

XJ

j¼1

G
½j�
4 g
ði;jÞ
24z ,

E
ðiÞ
12 � Unþ Vm� 2zWmnþ zG

ðiÞ
5 nþ zG

ðiÞ
4 mþ

XJ

j¼1

ðG
½j�
4 mg

ði;jÞ
24 þ G

½j�
5 ng

ði;jÞ
15 Þ,

E
ðiÞ
11 � �Umþ zWm2 � zG

ðiÞ
5 m�

XJ

j¼1

G
½j�
5 mg

ði;jÞ
15 ,

E
ðiÞ
22 � �Vnþ zWn2 � zG

ðiÞ
4 n�

XJ

j¼1

G
½j�
4 ng

ði;jÞ
24 . ð46Þ
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The E
ðiÞ
ij are known functions of z, U, V, W, G

ðiÞ
4 , and G

ðiÞ
5 . Substituting Eq. (46) into Eq. (11) with t ¼ 0 and

½QðiÞ� given by Eq. (43) yields

sðiÞ11 ¼ S
ðiÞ
11 sinmx sin ny sinot; sðiÞ22 ¼ S

ðiÞ
22 sinmx sin ny sinot,

sðiÞ33 ¼ S
ðiÞ
33 sinmx sin ny sinot; sðiÞ23 ¼ S

ðiÞ
23 sinmx cos ny sinot,

sðiÞ13 ¼ S
ðiÞ
13 cosmx sin ny sinot; sðiÞ12 ¼ S

ðiÞ
12 cosmx cos ny sinot,

S
ðiÞ
11 � Q

ðiÞ
11E
ðiÞ
11 þQ

ðiÞ
12E
ðiÞ
22; S

ðiÞ
22 � Q

ðiÞ
21E
ðiÞ
11 þQ

ðiÞ
22E
ðiÞ
22; S

ðiÞ
33 ¼ 0,

S
ðiÞ
23 � Q

ðiÞ
44E
ðiÞ
23; S13 � Q

ðiÞ
55E
ðiÞ
13; S12 � Q

ðiÞ
66E
ðiÞ
12. ð47Þ

The S
ðiÞ
ij are known functions of z, U, V, W, G

ðiÞ
4 , and G

ðiÞ
5 . Note that S

ðiÞ
33 ¼ 0 for the proposed theory. If

u
ðiÞ
3 ¼ wþ ZðiÞ1 zþ ZðiÞ2 z2 is assumed in Eq. (1), E

ðiÞ
33 and S

ðiÞ
33 will be also known functions of z, U, V, W, G

ðiÞ
4 , and

G
ðiÞ
5 . However, E

ðiÞ
33 and S

ðiÞ
33 are neglected from the beginning because they are mainly caused by normal loads

on the top and/or bottom surfaces and Poisson’s effect, and they do not have significant influences on other
stresses and strains [15].

Eq. (44) shows that the xy-plane distribution of gðiÞ4 (gðiÞ5 ) of every layer is the same and hence the ratios
among g½j�4 (g½j�5 ) at any ðx; yÞ location is the same. In other words, the shear warpings W

ðiÞ
1 and W

ðiÞ
2 are

independent of x and y, and hence there is no boundary restraint effect in a simply supported plate.
Substituting Eqs. (47) and (45) into Eq. (40) yields

0 ¼
XI

i¼1

Z ziþ1

zi

½ðmS
ðiÞ
11 � nS

ðiÞ
12 þ S

ðiÞ
13z þ ro2U1ÞCsdU1 þ ð�mS

ðiÞ
12 þ nS

ðiÞ
22 þ S

ðiÞ
23z þ ro2V1ÞScdV1

þ ð�mS
ðiÞ
13 � nS

ðiÞ
23 þ ro2W ÞSs dW �dz sinot

¼ fdpgTð½ ~A� � o2½ ~B�Þfpg sinot,

fCs;Sc; Ssg �

Z a

0

Z b

0

fcos2 mx sin2 ny; sin2 mx cos2 ny; sin2 mx sin2 nygdxdy,

fpg � fU ;V ;W ;G½1�4 ;G
½1�
5 ; . . . ;G

½J�
4 ;G

½J�
5 g

T, ð48Þ

where ½ ~A� and ½ ~B� are ð3þ 2JÞ � ð3þ 2JÞ constant matrices. Note that the u, v, and w in Eq. (44) represent the
in-plane (or reference plane) deformation mode shape and the U1ðzÞ and V 1ðzÞ in Eq. (45) represent the
thickness deformation mode shape. For a known in-plane mode shape, the thickness mode shapes and natural
frequencies can be obtained by solving the following eigenvalue problem from Eq. (48)

ð½ ~A� � o2½ ~B�Þfpg ¼ f0g. (49)

The transverse normal stress S
ðiÞ
33 can be obtained by integrating the third equation of Eq. (41), i.e.

S
ðiÞ
33z ¼ mS

ðiÞ
13 þ nS

ðiÞ
23 � ro2W (50)

and setting S
ð1Þ
33 ðz1Þ ¼ 0 at the bottom surface.

For a 5 cm� 5 cm� 1 cm aluminum plate with E ¼ 70GPa, n ¼ 0:3, and r ¼ 2702 kg=m3, Table 1
compares the natural frequencies o11;k (i.e., ðm; n; kÞ ¼ ð1; 1; kÞ) of vibration modes obtained from the SPT
with the 3D elasticity solutions obtained by Vel and Batra [14] using a power series method. The natural
frequencies o11;k are normalized to be non-dimensional as o11k � o11ka2

ffiffiffiffiffiffiffiffiffi
r=E

p
=h. With the use of 3 layers and

3 sublaminates (i.e., I ¼ J ¼ 3), there are only 9 variables in the vector fpg of Eqs. (48) and (49) and hence it
can give only 9 natural frequencies. It is clear that all natural frequencies are close to the exact ones except
o11;9. When the number of layers increases beyond 10, all the frequencies agree well with the exact ones.
Fig. 10 shows the thickness-direction distributions of stresses S13, S11, and S33 of 6 modes obtained using 15
layers and 15 sublaminates (i.e., I ¼ J ¼ 15) and setting the maximum of the 15 G

½j�
5 to be one. All the Sij are

plotted using the same scale, but the S13 and S33 in Fig. 10a are small and hence they are magnified by 5 and 10
times, respectively. By scrutinizing the in-plane and thickness-direction distributions of U, V, W, U1, V1, W i,
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Table 1

The natural frequencies o11;k of thickness modes of a 5 cm� 5 cm� 1 cm aluminum plate (the # indicates the mode number)

Exact SPT SPE Characteristics

a ¼ 5h J ¼ I ¼ 15 J ¼ I ¼ 11 J ¼ I ¼ 3 J ¼ I ¼ 3 J ¼ I ¼ 11

layers layers layers layers layers

o11;1 5.3036 5.2813 5.2813 5.2813 5.3606 5.3605 U ¼ V ¼ 0, U1 ¼ V1, W 1 ¼W 2, Wa0,

(#1) (#1) S11 ¼ S22, S13 ¼ S23 (BS)

(#1) (#1)

o11;2 13.777 13.777 13.777 13.777 13.887 13.887 U ¼ �V ¼ U1 ¼ �V1;W ¼W 1 ¼W 2 ¼ 0,

(#6) (#6) S11 ¼ �S22 ¼ const., S13 ¼ S23 ¼ S33 ¼ 0 (TC)

(#4) (#4)

o11;3 23.136 23.287 23.287 23.287 23.351 23.351 U ¼ V ¼ U1 ¼ V1;W ¼W 1 ¼W 2 ¼ 0,

(#14) (#14) S11 ¼ S22 ¼ const., S13 ¼ S23 ¼ 0 (TT)

(#9) (#9)

o11;4 50.619 50.619 50.619 50.634 50.642 50.628 U ¼ V ¼W ¼ 0;U1 ¼W 1 ¼ �V1 ¼ �W 2,

(#52) (#52) S11 ¼ �S22;S13 ¼ �S23, S33 ¼ 0 (S)

(#29) (#29)

o11;5 54.727 55.146 55.146 55.162 55.170 55.155 U ¼ V ¼ 0, U1 ¼ V1, W 1 ¼W 2, Wa0,

(#67) (#67) S11 ¼ S22, S13 ¼ S23 (SB)

(#42) (#42)

o11;7 98.386 98.395 98.411 99.442 99.458 98.426 U ¼ �V ;W ¼ 0, U1 ¼ �V1, W 1 ¼ �W 2,

(#214) (#211) S11 ¼ �S22,S13 ¼ �S23, S33 ¼ 0 (STC)

(#151) (#147)

o11;8 104.75 100.17 100.19 101.20 101.21 100.20 U ¼ V , W ¼ 0, U1 ¼ V 1, W 1 ¼W 2,

(#228) (#225) S11 ¼ S22, S13 ¼ S23 (STT)

(#158) (#158)

o11;9 146.01 148.04 148.08 163.63 163.64 148.09 U ¼ V ¼ 0, U1 ¼ V1, W 1 ¼W 2, W ffi 0,

(#532) (#473) S11 ¼ S22, S13 ¼ S23 (SB)

(#412) (#366)
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and Sij the characteristics of these modes are determined and listed in the last column of Table 1. The ð1; 1; 1Þ
mode is a bending mode with small shear deformation and will be called a bending–shearing (BS) mode.
Although the S13 of Mode ð1; 1; 1Þ in Fig. 10a is small, it makes the classical plate theory cannot predict this
frequency well. The ð1; 1; 2Þmode is a pure in-plane tension–compression (TC) mode, as shown later in Fig. 12.
Mode ð1; 1; 3Þ is a pure in-plane tension–tension (TT) mode. Because of the extension–extension deformation
(i.e., S11 ¼ S22), the dynamical inertial stretching along the thickness direction caused by Poisson’s effect
results in a non-zero but small S33 in the 3D elasticity solution. This non-zero S33 cannot be predicted by this
theory because Eq. (50) shows that the S33 in this theory only accounts for those caused by shear stresses S13

and S23. If u
ðiÞ
3 ¼ wþ ZðiÞ1 zþ ZðiÞ2 z2 is assumed from the beginning in Eq. (1), this S33 can be also obtained [15].

Because there is no shear deformation in Modes ð1; 1; 2Þ and ð1; 1; 3Þ, even the classical plate theory can predict
these two frequencies well by post-processing the 3D elasticity equations after the reference-plane
deformations u, v, and w are obtained from the plate theory. If u at x ¼ 0; a and v at y ¼ 0; b are fixed to
zero, these two modes will be prevented from happening.

Mode ð1; 1; 4Þ is a pure transverse S (shearing) mode, and Mode ð1; 1; 5Þ is a transverse shear (see Fig. 2a and
b) with small bending shear–bending (SB) mode. Mode ð1; 1; 6Þ (o11;6 ¼ 86:840 in Ref. [14]) is missing because
it is a thickness-stretching mode and it is excluded from the assumed displacement field shown in Eq. (1).
Again, if u

ðiÞ
3 ¼ wþ ZðiÞ1 zþ ZðiÞ2 z2 is assumed from the beginning in Eq. (1), this mode would be also predicted

[15]. Mode ð1; 1; 7Þ is an shear–tension–compression (STC) mode with a major transverse shear accompanied
by a small in-plane tension–compression deformation similar to Mode ð1; 1; 2Þ. Mode ð1; 1; 8Þ is a
shear–tension–tension (STT) mode with a major transverse shear accompanied by a small in-plane
tension–tension deformation similar to Mode ð1; 1; 3Þ (see Fig. 2). Mode ð1; 1; 9Þ is an SB mode having
transverse shears accompanied by a very small bending deformation. The stresses in Fig. 10 agree well with the
3D elasticity solutions (Fig. 2 in Ref. [14]). Eq. (50) shows that S

ðiÞ
33ðzÞa0 if S

ðiÞ
13ðzÞ ¼ S

ðiÞ
23ðzÞ and m ¼ n, as
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Fig. 10. The stress distributions of different modes: (a) Mode ð1; 1; 1Þ, (b) Mode ð1; 1; 4Þ, (c) Mode ð1; 1; 5Þ, (d) Mode ð1; 1; 7Þ, (e) Mode

ð1; 1; 8Þ, and (f) Mode ð1; 1; 9Þ, where the solid, broken, and thin lines represent S13, S11, and S33, respectively.
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shown in Table 1 and Fig. 10a, c, e and f. In other words, the S
ðiÞ
33ðzÞ is mainly due to Poisson’s effect induced

by the in-plane tension–tension deformation caused by shear strains, as shown in Fig. 2b. On the other hand,

S
ðiÞ
33ðzÞ ¼ 0 if S

ðiÞ
13ðzÞ ¼ �S

ðiÞ
23ðzÞ and m ¼ n, as shown in Table 1 and Fig. 10b and d. However, if u

ðiÞ
3 ¼

wþ ZðiÞ1 zþ ZðiÞ2 z2 is assumed from the beginning in Eq. (1), this would result in a non-zero but small S
ðiÞ
33ðzÞ. All

the results also confirm that S33 can be accurately predicted by post-processing results obtained from a 2D
plate theory using the 3D elasticity equations.

The S13 curves in Fig. 10d–f become smooth when the number of layers is increased beyond 20, as shown in
Fig. 11a. Fig. 11b shows that, although o11;9 is not accurate when only 3 layers are used, the predicted
distributions of shear stresses are fairly accurate. However, the inaccurate S13 causes the integrated S33 to be
non-zero on the top surface. Note that Fig. 11a and b have different scales because each is individually scaled
to have its maximum G

½j�
5 to be one. If only the deformation dynamics of a plate’s surfaces is the interest of

analysis and/or testing, Mode ð1; 1; 1Þ is the most important one. However, other thickness modes are
important for accurate stress analysis and wave propagation study.

It is apparent that this method works well because the analytical reference-plane mode shapes of a simply
supported isotropic (or orthotropic) plate are available and the reference-plane mode shapes are not sensitive
to thickness vibrations even for thick plates. After a reference-plane mode shape is obtained using a 2D plate
theory, the transverse normal stress sðiÞ33 (and sðiÞ13 and sðiÞ23 if the classical plate theory is used) can be obtained by
integrating Eq. (41), and all other strains and stresses can be obtained using the strain–displacement relations
and constitutive equations (e.g., Eqs. (10) and (11)). Hence, the original 3D problem becomes 1D, as shown by
Eqs. (45) and (48). However, for structures with no analytical reference-plane mode shapes, one needs to use a
numerical method (e.g., the finite-element method) to obtain the reference-plane and thickness mode shapes
simultaneously. Unfortunately, if a 2D plate theory does not have enough dofs for different thickness
vibration modes (e.g., the classical, the first-order shear, and the third-order shear theories), the high-order
modes shown in Figs. 10b–f cannot be obtained and restraint boundary conditions cannot be treated.
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4.3. Finite-element analysis and boundary restraint effects

Here we demonstrate that the SPE derived from the proposed SPT can accurately predict thickness modes
and handle different boundary restraint effects. Moreover, the number of dofs of an SPE is adaptable and it
can directly compute sðiÞ13 and sðiÞ23 without post-processing by integrating the 3D equilibrium equations.

It follows from Eqs. (42), (8), (10), (11), and (43) that, for a simply supported plate, the boundary conditions
for using the SPT are

v ¼ w ¼ wy ¼ g½j�4 ¼ N1 ¼M1 ¼M
½j�

1 ¼ 0 at x ¼ 0; a,

u ¼ w ¼ wx ¼ g½j�5 ¼ N2 ¼M2 ¼M
½j�

2 ¼ 0 at y ¼ 0; b,

s13 ¼ s23 ¼ 0 at z ¼ �h=2, ð51Þ

where j ¼ 1; . . . ; J and

fN1;M1;M
½j�

1 g �
XI

i¼1

Z ziþ1

zi

sðiÞ11f1; z; zdij þ g
ði;jÞ
15 gdz,

fN2;M2;M
½j�

2 g �
XI

i¼1

Z ziþ1

zi

sðiÞ22f1; z; zdij þ g
ði;jÞ
24 gdz. (52)

Note that the boundary conditions on s13 and s23 are automatically satisfied by the derived shear warping

functions (see Eq. (4)). The boundary conditions N1 ¼M1 ¼M
½j�

1 ¼ 0 at nodes on the boundaries x ¼ 0; a and

N2 ¼M2 ¼M
½j�

2 ¼ 0 at y ¼ 0; b are only to satisfy the boundary conditions sðiÞ11 ¼ 0 at x ¼ 0; a and sðiÞ22 ¼ 0 at

y ¼ 0; b in an average sense. These boundary conditions can be enforced through the use of multiple-point
constraints, but it is inconvenient for a displacement-based finite-element method because it involves ux, uy, vx,
vy, wxx, wyy, g4x, g4y, g5x, and g5y that are not direct nodal dofs. If the stress boundary conditions are not
appropriately implemented, accuracy may loose due to the free-edge effect. However, for a simply supported
plate, s11 is close to zero around x ¼ 0; a and s22 is close to zero around y ¼ 0; b (see Eq. (47)), and hence the
free-edge effect is not expected here.

Using 10� 10 SPE elements the natural frequencies of the simply supported aluminum plate are obtained
and also listed in Table 1. The frequencies are almost the same as those obtained from the analytical method
shown in Section 4.2 using 3 and 11 layers, respectively. However, o11;1 is 1.5% higher because it is a bending-
dominant mode and the polynomial shape functions used in the finite-element formulation makes the plate
stiffer. When the number of elements increases to 15� 15, o11;1, o11;2, and o11;3 reduce to 5:3368, 13:825, and
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23:316, but other o11;k remain almost the same because they are not significantly coupled with the reference-
plane bending. The distributions of Sij are virtually the same as those in Fig. 10. With the use of 11
sublaminates and 11 layers, the total number of dofs is 2736 (after boundary conditions implemented). To
reduce the number of dofs in modal analysis, one can use the mode shape of w of Mode ð1; 1; 1Þ to reduce all
the dofs of wðx; y; tÞ into just one modal coordinate. This reduction does not cause any change of the mode
shapes and natural frequencies shown in Table 1. This confirms again that these modes are not sensitive to the
reference plane deformation shape. One can even use just one modal coordinate for each of g½j�4 and g½j�5 to
reduce more dofs. With this reduction, the total number of dofs reduces from 2736 to 1785, and the obtained
natural frequencies have a highest error only 0:6% at o11;9. Modes ð1; 1; 2Þ and ð1; 1; 3Þ are in-plane TC and TT
modes, as shown in Fig. 12. It follows from the equation of E

ðiÞ
12 in Eq. (46) and Table 1 that E12 ¼ S12 ¼ 0 for

Mode ð1; 1; 2Þ because U ¼ �V , m ¼ n, and W ¼ G
ðiÞ
4 ¼ G

ðiÞ
5 ¼ 0. On the other hand, E12 and S12 are non-zero

for Mode ð1; 1; 3Þ and they have large in-plane shears around the four corners, as shown in Fig. 12c. As Table 1
shows, Mode ð1; 1; 9Þ is actually the #473 (or #532 if 3 layers) mode in the finite-element analysis because there
are many other low-frequency modes, including many thickness modes. With the use of ðm; nÞ ¼ ð1; 1Þ in the
analytical method shown in Section 4.2 and other analytical methods in the literature, many modes with
W ¼ 0 (i.e., similar to Modes ð1; 1; 2Þ and ð1; 1; 3Þ) and having natural frequencies lower than o11;9 are missed.
All the finite-element results validate the SPE.

Since it is common in high-temperature applications to employ a ceramic top layer as a thermal barrier to a
metallic structure, we choose the constituent materials of the FGP for demonstration to be Aluminum (#1)
and SiC (#2) having the following material properties:

E1 ¼ 70GPa; n1 ¼ 0:3; r1 ¼ 2702 kg=m3,

E2 ¼ 427GPa; n2 ¼ 0:17; r2 ¼ 3100 kg=m3. (53)

Many actual applications of plates are constructed in a way similar to a cantilevered plate, as shown in Fig. 1.
Moreover, setting up a cantilevered plate for experimental testing is much easier than setting up a simply
supported plate. Unfortunately analytical mode shapes of a cantilevered plate do not exist. Hence, we will
consider a 10 cm� 6 cm� 1 cm cantilevered plate to show the modeling capability of the sublamination plate
element, the influences of boundary restraints, and the influences of material variation through the plate
thickness on structural characteristics and the local stress distribution around boundaries. Using a shear-
deformable 2D plate theory to analyze a cantilevered 3D solid different sets of boundary conditions may be
used by different researchers because actual boundary conditions are affected by the clamping device, the
clamping force, and the stiffness ratio of the plate and fixture materials. Here we assume the boundary
conditions to be

u ¼ v ¼ w ¼ wx ¼ wy ¼ u
ð1Þ
1 ð0; y;�h=2; tÞ ¼ u

ðIÞ
1 ð0; y; h=2; tÞ ¼ 0 at x ¼ 0,

gðiÞ5 ¼ 0; i ¼ 1; . . . ; I ði:e:; sðiÞ13 ¼ 0Þ at x ¼ a,
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gðiÞ4 ¼ 0; i ¼ 1; . . . ; I ði:e:; sðiÞ23 ¼ 0Þ at y ¼ 0; b. (54)

The boundary conditions u
ð1Þ
1 ð0; y;�h=2; tÞ ¼ u

ðIÞ
1 ð0; y; h=2; tÞ ¼ 0 are implemented through multiple-point

constraints on dofs of each node on the clamped edge. If the plate material is a uniform mixture of Aluminum
and SiC with V1 ¼ V2 ¼ 0:5 through the whole thickness (i.e., a pure isotropic plate), Fig. 13 shows the first
flexural mode shape of the reference plane and the xy-plane distributions of stresses. Because of the use of
shear warping functions, all transverse shear stresses obtained from SPEs are continuous at any point ðx; y; zÞ
in the plate’s 3D domain, as revealed by Eq. (37). However, just like any finite-element analysis of plates using
3D solid elements, s11, s22, and s12 may not be continuous at nodes, and hence the averaged value is presented
at each node. We note that the boundary restraint at the clamped end changes the thickness-direction
distribution of s13, as shown in Fig. 14. The transition length can be used to quantify the boundary restraint
effect. Note that the distribution of s13 around x ¼ 0 is similar to Fig. 7c due to the boundary restraints
u
ð1Þ
1 ð0; y;�h=2Þ ¼u

ðIÞ
1 ð0; y; h=2Þ ¼ 0. If the plate material is distributed according to Eq. (16) with n ¼ 1:0 and

z1 ¼ �h=2, Fig. 15 shows the thickness-direction distributions of s13ðx; b=2; zÞ and s11ðx; b=2; zÞ at 16 different
longitudinal locations. The distributions of s13 and s11 are asymmetric and the highest s13 exists close to the
top surface (i.e., the SiC-dominant area). If the plate material is distributed according to Eq. (16) with n ¼ 2:0
and z1 ¼ �h=2, Fig. 16 shows the thickness-direction distributions of s13ðx; b=2; zÞ and s11ðx; b=2; zÞ at 16
different longitudinal locations. We find that the upper part takes more share of stresses when the power index
n increases. Note that s11ðx; b=2; 0Þ does not show significant bending–extension coupling. It may be due to the
free boundary at x ¼ a, s11ða; y; zÞ ¼ 0 not being enforced, and/or the use of low-order, bilinear shape
functions for uðx; yÞ in the finite-element modeling, and this problem requires more studies. Fig. 17 shows the
thickness-direction distributions of s13ðx; b=2; zÞ and s11ðx; b=2; zÞ of the second bending mode. Note that s13
changes sign at a location different from that of s11. Figs. 14–17 show that, for an element away from
boundaries and hence free from free-edge and boundary restraint effects, one can easily reduce its dofs
without loss of accuracy by using specific ratios between g½j�4 and g½j�5 , as demonstrated by Figs. 6 and 8.
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Moreover, Figs. 16 and 17 show that, away from boundaries, the distribution profile of s13 is the same and it is
the one with all g½j�5 having the same value (see Eq. (37)).

The first 12 modes of the cantilevered plate are the 1st By (796.38Hz, Fig. 13a), 1st Tx (2779.4Hz), 1st Bz

(3830.9Hz), 2nd By (4775.1Hz), 2nd Tx (8950.1Hz), 1st Ex (12,320Hz), 3rd By (12,545Hz), 2nd Bz

(13,402Hz), 1st By=1st Bx (14,438Hz), 3rd Tx (16,934Hz), 2nd By/1st Bx (19,605Hz), and 4th By (23,427Hz),
where By means bending w.r.t. the y-axis, Tx means torsion w.r.t. the x-axis, Bz means bending w.r.t. the
z-axis, Ex means extension along the x-axis, etc. Fig. 18 shows the second to tenth modes and natural
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frequencies when the bending mode shape is fixed to be the first bending mode by using one modal coordinate.
We find that all of them are in-plane tension, compression, and/or shearing modes, and the transverse shears,
if exist, have the same profile as that shown in Figs. 16a and 17a at locations away from boundaries. Because
high-order transverse shears similar to those shown in Fig. 10d–f only exist at very high frequencies, they can
be important for stress analysis and wave propagation studies under impulsive loading, but they would not
have significant influences on the global surface dynamics of a plate, especially when the plate thickness
becomes thin (e.g., a=h; b=h410).



ARTICLE IN PRESS

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

3830.9Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

12320Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

13402Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

27559Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

32824Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

35075Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

37311Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

44267Hz

0 20 40 60 80 100 120

−20

0

20

40

60

80

100

x (mm)

y
 (

m
m

)

45131Hz

Fig. 18. The second to tenth modes under the first bending mode of the cantilevered plate with n ¼ 2:0 and z1 ¼ �h=2 in Eq. (16).
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Any temperature variation through the plate thickness will affect the distribution of material properties and
hence the dynamic characteristics of FGPs. To examine temperature effects one needs to use, for example,
Eqs. (17) and (13) and consider the fF̂

½n�
g in Eq. (23).

5. Concluding remarks

We presented a 2D sublamination theory of varying degrees of freedom (dof) for functionally graded plates
that can account for layerwise higher-order transverse shear strains, continuity of interlaminar shear stresses,
free shear-stress conditions on the bonding surfaces, and deformation-dependent shear warpings. The shear
warping functions of a functionally graded plate are shown to depend on the detailed distribution of materials
through the thickness, the vibration frequency, and boundary conditions. Moreover, a sublamination plate
element of varying dofs is derived based on the plate theory and is numerically validated for performing
analysis of complex stress states inside and around the boundaries of a functionally graded plate. The plate
element can be used for detailed analysis of thick and thin plates with any boundary conditions. For quick
analysis, one can use the theory with less dofs to obtain results equivalent to those from a 2D shear-
deformable plate theory. For detailed analysis of stress states one can use the theory with more dofs to obtain
results equivalent to those from 3D equilibrium equations.
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